Copied to
clipboard

G = C3×C52⋊S3order 450 = 2·32·52

Direct product of C3 and C52⋊S3

direct product, non-abelian, soluble, monomial, A-group

Aliases: C3×C52⋊S3, (C5×C15)⋊2S3, C52⋊C31C6, C521(C3×S3), (C3×C52⋊C3)⋊3C2, SmallGroup(450,20)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C3 — C3×C52⋊S3
C1C52C52⋊C3C3×C52⋊C3 — C3×C52⋊S3
C52⋊C3 — C3×C52⋊S3
C1C3

Generators and relations for C3×C52⋊S3
 G = < a,b,c,d,e | a3=b5=c5=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc3, be=eb, dcd-1=b-1c3, ece=b-1c-1, ede=d-1 >

15C2
25C3
50C3
3C5
3C5
15C6
25S3
25C32
3D5
15C10
3C15
3C15
25C3×S3
3C3×D5
15C30
3C5×D5
2C52⋊C3
3D5×C15

Smallest permutation representation of C3×C52⋊S3
On 45 points
Generators in S45
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 3 5 2 4)(6 10 9 8 7)(16 18 20 17 19)(21 25 24 23 22)(31 33 35 32 34)(36 40 39 38 37)
(1 12 7)(2 15 10)(3 13 8)(4 11 6)(5 14 9)(16 28 23)(17 26 21)(18 29 24)(19 27 22)(20 30 25)(31 43 38)(32 41 36)(33 44 39)(34 42 37)(35 45 40)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)

G:=sub<Sym(45)| (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22)(31,33,35,32,34)(36,40,39,38,37), (1,12,7)(2,15,10)(3,13,8)(4,11,6)(5,14,9)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25)(31,43,38)(32,41,36)(33,44,39)(34,42,37)(35,45,40), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)>;

G:=Group( (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,10,9,8,7)(16,18,20,17,19)(21,25,24,23,22)(31,33,35,32,34)(36,40,39,38,37), (1,12,7)(2,15,10)(3,13,8)(4,11,6)(5,14,9)(16,28,23)(17,26,21)(18,29,24)(19,27,22)(20,30,25)(31,43,38)(32,41,36)(33,44,39)(34,42,37)(35,45,40), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45) );

G=PermutationGroup([[(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,3,5,2,4),(6,10,9,8,7),(16,18,20,17,19),(21,25,24,23,22),(31,33,35,32,34),(36,40,39,38,37)], [(1,12,7),(2,15,10),(3,13,8),(4,11,6),(5,14,9),(16,28,23),(17,26,21),(18,29,24),(19,27,22),(20,30,25),(31,43,38),(32,41,36),(33,44,39),(34,42,37),(35,45,40)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E5A5B5C5D5E5F6A6B10A10B10C10D15A···15H15I15J15K15L30A···30H
order1233333555555661010101015···151515151530···30
size115115050503333661515151515153···3666615···15

39 irreducible representations

dim1111223366
type++++
imageC1C2C3C6S3C3×S3C52⋊S3C3×C52⋊S3C52⋊S3C3×C52⋊S3
kernelC3×C52⋊S3C3×C52⋊C3C52⋊S3C52⋊C3C5×C15C52C3C1C3C1
# reps11221281624

Matrix representation of C3×C52⋊S3 in GL3(𝔽31) generated by

500
050
005
,
800
020
002
,
200
0160
001
,
010
001
100
,
100
001
010
G:=sub<GL(3,GF(31))| [5,0,0,0,5,0,0,0,5],[8,0,0,0,2,0,0,0,2],[2,0,0,0,16,0,0,0,1],[0,0,1,1,0,0,0,1,0],[1,0,0,0,0,1,0,1,0] >;

C3×C52⋊S3 in GAP, Magma, Sage, TeX

C_3\times C_5^2\rtimes S_3
% in TeX

G:=Group("C3xC5^2:S3");
// GroupNames label

G:=SmallGroup(450,20);
// by ID

G=gap.SmallGroup(450,20);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,182,973,10804,1439]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^5=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^3,b*e=e*b,d*c*d^-1=b^-1*c^3,e*c*e=b^-1*c^-1,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×C52⋊S3 in TeX

׿
×
𝔽